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“It’s as if you were trying to do a 

complex jigsaw puzzle in the 

dark with your hands tied behind 

your back” [1].  

  

Introduction  
  

Since Turing wrote of a ‘Universal 

Computing Machine’ in his 1936 paper 

On Computable Numbers, technology 

has advanced at a rate unprecedented 

throughout human history [2]. This 

advancement can be marked as, since 

their conception, computers have 

become more powerful with every 

passing year. This increase itself was 

noted by Gordon Moore who 

postulated that the number of 

transistors you can fit into a given area 

will double with every other passing 

year, which effectively translates to a 

doubling of computing power over a 2 

year period [3].   

  

As transistors are physical objects, 

there is a lower limit to their size as, at 

present, there is no known way of 

decreasing their size smaller than 

atomic scales. As the size of the 

transistors within a computer are 

already only one order of magnitude 

larger in size than atoms, one could 

ask; “Where else is there to go?” [4]. If 

we want to find a way of improving 

computing technology beyond simply 

making computers bigger, we will need 

to find a new way of moving forward. 

One very good possibility is the 

quantum computer, which utilises the 

inherent weirdness of quantum 

mechanics in its operations and 

therefore may be able to solve 

problems that classical computers are 

simply incapable of solving. To try and 

understand how they work, one first 

needs to appreciate how even at the 

basic level of information, they are 

radically different from classical 

computers. So as classical computers 

have bits as their basis of information, 

quantum computers have quantum 

bits.   
  

The Basic Element - 

Quantum Bits  
  

The most fundamental element of a 

quantum computer is the quantum bit, 

or qubit. Qubits are objects with a 

wavefunction that only allows one of 2  

possible observables to be measured, 

such as an electron that is either spin 

up or spin down [5]. One of the 

observables is assigned to correspond 

to a 1 and the other to a 0, much like a 

transistor in a classical computer being 

assigned to a 1 or 0 when it is on or 

off.   

  

The qubit can be mathematically 

described as a 2-D unit vector, with the 

1 and 0 states being considered 

orthogonal. Any linear combination of 

the 2 states for a single qubit is 

allowed as long as the wavefunction 

describing the qubit retains its unit 

magnitude. As with any other 

wavefunction, the square of the 

coefficients of the eigenstates will give 

the corresponding probability of 

observing either the 1 or 0 state when 

the qubit is measured. Therefore unlike 

a classical bit, which is either a 1 or a 

0, the quantum bit can be, until 

measurement, both a 1 and a 0 [5]. A 



visualisation of this is shown in figure 1 

[6].  

  

  
Figure 1: The wavefunction for a single qubit is 

displayed by the blue arrow. At any point it can be 

displayed as a sum of the two orthogonal 1 and 0 

states, the weighting of each state given by the 

coefficient alpha or beta respectively.  

  

A wavefunction can be expressed as a 

sum of eigenstates, each of which 

correspond to a possible observable 

[7]. This means that in a system of 

many qubits, called a register of qubits, 

there will be a component with an 

associated probability for each 

possible binary string. For example, for 

a two qubit register, there will be 

eigenstates for the states 00, 10, 01 

and 11.  

  

This is where quantum computing gets 

its power. It relies on the fact that the 

qubit can exist in more than one state 

at once. As a qubit register is a 

quantum system, once a measurement 

of the system is made, the 

wavefunction will collapse into one of 

the eigenstates and all previous 

information about the wavefunction will 

be lost [7]. Therefore to preserve the 

superposition of the quantum state of 

the qubits, you can’t make an 

observation of the system in the middle 

of a calculation. You have to let the 

system evolve over time to evaluate 

what you want it to. Only at the end of 

the computation can you  

‘take off the blindfold’, make a 

measurement of the system and see 

what state the qubits are actually in. 

This, unsurprisingly, makes things 

difficult.  

  

In a classical computer, bits interact 

through logic gates [8]. In a quantum 

computer, qubits are mathematically 

manipulated and interact with each 

other via imaginatively named 

quantum logic gates.   

 

  

Making Things Happen - 

Quantum Logic Gates  
  

Before trying to understand the 

quantum logic gate, it is worth briefly 

mentioning their classical counterpart. 

Logic gates perform the most basic 

computational processes within a 

computer in evaluating a Boolean 

function [8]. So for a given binary input 

or inputs, there will be a single binary 

output. This will depend on the type of 

logic gate and the inputs it is given. As 

there are usually not many different 

possible combinations of inputs, the 

possible inputs and their 

corresponding outputs are frequently 

given in a truth table for a logic gate.  

Three such cases, the AND, OR and 

NOT gates, are shown in figure 2 [9].  

  



 
Figure 2: The graphical representations for the AND 

OR and NOT gates are shown with their 

corresponding truth tables  

Quantum logic gates are markedly 

different in many respects. One key 

difference is that they have the same 

number of outputs as inputs [5]. 

Another is that, as a quantum bit can 

exist in a superposition of the 1 and 0 

states, the quantum logic gate 

evaluates its respective function on the 

superposition of the states of a qubit 

rather than on either one of the two 

states [5]. This second point means 

that quantum logic gates do not 

constitute a measurement, but in fact 

act as a quantum mechanical 

operators. The operators that are 

suitable to be quantum logic gates 

preserve the magnitude of their 

operand. This means that when a 

quantum logic gate operates on a qubit 

system, the wavefunction describing 

the qubit system remains normalised  

[10].   

  

Unlike most quantum mechanical 

operators, the operations performed by 

quantum logic gates are fixed to exist 

in a relatively small number of 

dimensions. This is because the qubits 

that they operate on occupy only a 

small Hilbert space, the number of 

dimensions of which is equal to the 

number of possible observables [5].  

E.g. for a 1 qubit system, the Hilbert 

space will only be 2 dimensional, 

corresponding to the observable 1 and 

0 state of the single qubit. This means 

that quantum logic gates (or simply 

quantum gates) can and frequently are 

represented as matrix operators acting  

on unit vectors corresponding to the  

  

wavefunction of the qubit or qubits they 

act on [5]. This is comparable to the 

operators for spin eigenstates on an 

electron, which are also represented in 

matrix form [11].   

  

In both quantum and classical 

computing, the operations logic gates 

perform vary in complexity. For 

example the classical exclusive OR (or 

XOR) which for 2 inputs only returns a 

1 output if one of the inputs is a 1, is 

more complicated than the NOT gate, 

which returns its output in the opposite 

state as the input [8]. This idea leads 

to the non-trivial result that logic gates 

with more complex operations can be 

represented as a combination of logic 

gates with more straightforward 

operations. This idea can be followed 

through until the logic gates reach their 

lowest level of complexity. The most 

basic set of logic gates with which can 

be used to build all others are called  

‘Universal Gates’ [12].  

  

For the quantum case, this makes 

sense theoretically as for any 

normalised wavefunction describing a 

quantum mechanical state, an operator 

exists to change the wavefunction to 

any other normalised linear sum of 

eigenstates [13]. This leads to the fact 

that, that in theory, a quantum gate 

can be constructed to perform any 

unitary operation on a register of 

qubits. One such set of universal 

quantum gates to perform any 



operation are: the Hadamard, 

controlled NOT (or cNOT) and the 

phase control gates [14].   

  

The cNOT gate, as shown in figure 3, 

is the closest of this set to behave as a 

classical logic gate [15]. Unlike the 

classical NOT gate, the cNOT gate 

takes a two qubit input. These are the 

control bit and the target bit. The target 

bit is the qubit on which the NOT 

operation is performed. This operation 

simply switches the value of the target 

qubit from either a 1 to a 0 or from a 0 

to a 1. The control bit, as the name 

suggests, controls whether a NOT 

operation is performed on the target 

bit. This is achieved as if the control it 

is set to 0, the NOT operation is not 

performed, and if the control bit is set 

to 1, the operation is performed and 

the state of the target bit is inverted [5]. 

The unusual properties of quantum 

logic gates begin to present 

themselves here as unlike all single 

output classical logic gates, the cNOT 

gate has the same number of outputs 

as it does inputs.   

  
Figure 3: The control bit is shown here as a solid 

black circle and the target bit is the circle with a 

cross. As the control bit is in a superposition of the 

1 and 0 state, the target bit is in a superposition of 

having and not having the NOT operation 

performed on it. α and β are the coefficients of the 

0 and 1 eigenstates respectively.  

These properties show themselves 

further in both the Hadamard and 

phase control gates, which rely on the 

quantum properties of the qubits so 

much that they have no classical 

comparator.  

  

The Hadamard gate works to create a 

superposition of states for a single 

qubit. The superposition it creates 

depends on the state of the input bit. 

As the output of the Hadamard gate is 

a sum of both of the potential states of 

the qubit, the output is in a 

superposition of states [5]. The phase 

control gate serves to change the 

phase of the input qubit. This will have 

no effect on the overall probability of 

measuring a cubit in either state, 

however it can greatly affect the 

outcome of operations performed on a 

qubit [5]. Much like for phasor 

component of the simple harmonic 

oscillator eigenstate, the phase 

property of a qubit has no influence on 

the magnitude of the coefficient of the 

eigenstate, but does have an effect on 

some calculations performed on the 

wavefunction [5].  

  

An example of this is shown in the 

outcomes of a Hadamard gate 

operating separately on the 1 and 0 

states in figure 4 [16].  

  
Figure 4: The superpositions of states after the 

hadamard gate is implemented on the eigenstates 

of a qubit is shown here. The sign difference 

between the 1 eigenstates for the two cases is due 

to the difference in phase between the two results.  

  



Here, even though the probability of 

observing a 1 or a 0 is ½ after the 

Hadamard gate has operated for both 

cases, if the same operation was 

performed again, the outcomes would 

be drastically different [5]. This is due 

to the difference in sign of the 

coefficient of the 1 eigenstate between 

the 1 and 0 case.  

  

Putting it All Together - 

Quantum Algorithms  
  

Now that we’ve covered what qubits 

are and how they can be manipulated 

using quantum logic gates, the next 

thing to consider is how the quantum 

gates themselves may be combined to 

perform a useful function on a qubit 

input.  

   

Again, it is the uncertain nature of the 

quantum state of the qubits that 

differentiates the quantum case from 

its counterpart. This results in the 

property of parallelism within the 

quantum computer.  

  

Parallelism means that when a 

quantum algorithm acts upon a set of 

qubits, as long as no measurement 

takes place, the algorithm will be 

evaluated on all possible states of the 

qubits [5]. This means that a 

computation is performed on all 

potential states of the system. As the 

number of qubits that are operated on 

increases, this property allows for a 

vast reduction in the number of steps 

of computation compared to a classical 

algorithm.   

  

This property arises as when a 

quantum mechanical operator acts on 

a wavefunction, it acts equally on all 

components of that wavefunction. 

Therefore, for a two qubit system, a 

system can be constructed with 4  

potential observables: 00, 01, 10 and 

11. When an operator acts on this 

system, the operation will be evaluated 

for all states.   

  

As quantum logic gates behave as 

these operators and quantum 

algorithms are simply a combination 

quantum gates, a quantum algorithm 

will be evaluated for all four possible 

states. If this principle can in theory be 

scaled up to perform complex 

calculations simultaneously on a large 

register of qubits, quantum computers 

may become faster (by the number of 

steps needed for a calculation) at 

performing certain tasks than a 

classical computer [5]. One such case 

is outlined, where performing 

calculations on a large register of 

qubits simultaneously gives a large 

advantage over classical computing 

methods.   

  

Quantum Searching - 

Grover’s Algorithm  

  

This algorithm would be very useful for 

those trying to analyse large data sets, 

such as personal online accounts. Say 

for example you were looking at a 

database that stored email addresses 

and phone numbers with entries stored 

in alphabetical order. This will mean 

there would be no order to the 

associated phone numbers. If you 

wanted to find an email address in that 



list given only a phone number, using a 

classical algorithm you would have to 

look at each entry in the list and just 

keep going until you stumbled across 

the correct email address. This, on 

average, takes a number of steps 

equal to half the number of entries in 

the database.  

  

The quantum search algorithm 

effectively works to look at every entry 

simultaneously. This is achieved by 

preparing a register of qubits such that 

there is one observable quantity 

assigned to each entry in the 

database, all in the 0 state. Each qubit 

is then passed through a Hadamard 

gate, putting the entire register into an 

equal superposition of the 1 and 0 

state. A set of operations called 

amplitude amplifications are then 

performed on the entire system [17]. 

The properties of these operations are 

such to single out only the 

wavefunction corresponding to the 

desired phone number. This, on 

average, takes a number of iterations 

equal to the square root of the number  

of entries [17]. Therefore, for large 

databases, a quantum search 

algorithm is substantially faster than 

any classical search algorithm.   

  

Conclusion  
  

Whilst for certain applications, 

quantum computers can improve the 

efficiency for some processes and 

allow others to be simulated, they 

cannot be complete replacements for 

classical computers [5]. This is 

because the quantum computer is only 

advantageous to use when it is desired 

to perform the same calculation for 

many different cases. When it comes 

to performing a complicated calculation 

for a single or few variables, classical 

computers have already been 

developed to perform such calculations 

efficiently. Therefore doing the same 

operation with a quantum computer 

offers no real advantage.   

  

The applications outlined are 

prevented by being actualised due to 

the issues associated with the practical 

construction of a quantum computer 

with a large qubit register. As of March 

2016, the largest reprogrammable 

quantum computer consists only of 5 

qubits [18]. So, despite the inherent 

advantages of quantum computing 

over classical computers for certain 

applications, quantum computers are 

prevented from eclipsing traditional 

computers simply due to the difficulty 

of scaling up the quantum computer.   

  

In the topics covered, the basic theory 

behind quantum computation as well 

as one of their potential uses have 

been outlined. It is however, clear that 

there is still a very long way to go 

before they can be put to practical 

application.   
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